## The Fundamental Groupoid and Group (Pt. IV)

**Point of Post: **This is a continuation of this post.

**T****he Fundamental Group of Path Connected Spaces**

It turns out that even though, a priori, to talk about the fundamental group of a space we have to distinguish a base point, it turns out that for nice spaces this really is irrelevant. In particular, we shall show that there is (in some sense) a unique isomorphism whenever the points and share the same path component (maximally path connected subset of ) of .

In particular, let’s assume that and are two points of such that there exists a path . Define a map from to by . In essence, this takes a path and creates a path in by first travelling back from to by , performing , and then making our way back to via .

Now, it should be evident that this correspondence is a group map, but if not it follows from the following general fact:

**Theorem: ***Let be any groupoid and objects in . Then, for any the map given by is a group isomorphism.*

**Proof: **To see that is a group map we merely verify that

The fact that is a bijectiion follows immediately since it is trivial to see that the map defined by is an inverse for . .

If we then, following the previous proof, denote to be the map defined by conjugating by we get that:

**Theorem: ***Let be a topological space and . If then . *

*Remark: *Up until this point the consideration of the fundamental groupoid seemed contrived and unappealing. It seemed an unnecessarily complicated construction which served no real purpose. Sure, it’s definitely made the proof that the fundamental group is actually a group simpler, but really this was because all of the work (which would have looked exactly the same whether done in the context of the fundamental group or groupoid!) was done in the groupoid section. That said, the above theorem is where the total structure of the fundamental groupoid becomes so powerful. Imagine if we had started with just defining the fundamental group as homotopy classes of loops at . Up until this point, everything would have worked out exactly the same. But, now imagine trying to define this isomorphism . We would have two choices. We could make everything intuitive, explain how it’s just conjugation by some path from , but to do this we’d really have to open up the whole can of worms that is involved with the fundamental groupoid: how to multiply arbitrary paths, why everything is an isomorphism, why notions like associativity, etc. still apply to this general non-loop situation. Or, we could instead just define the map without mentioning that it’s conjugation–this would be simple, in the sense that the proof would be concise, but it would lose the big algebraic picture. This is precisely why, even though it seems abstract and useless, the fundamental groupoid is a necessary discussion topic prior to the fundamental group.

Because of this theorem, if we start with a path connected space we know that for any two points . Thus, we may unabashedly define the *fundamental group * of , to be the fundamental group of based at any point of . It is extremely important to note that this isomorphism isn’t natural–we have to choose a path to produce an isomorphism . That said, it’s not so bad, because at least the class of isomorphisms we have described is just a conjugacy class in the group of isomorphisms .

As a last note, we define the notion of simple connectedness. In particular, we call a space *simply connected *if is path connected and is trivial. Simple connectedness intuitively means that is a path connected space that has no one-dimensional holes.

**References:**

[1] Spanier, Edwin Henry. *Algebraic Topology*. New York: McGraw-Hill, 1966. Print.

[2] Hatcher, Allen. *Algebraic Topology*. Cambridge: Cambridge UP, 2002. Print.

[3] Bredon, Glen E. *Topology and Geometry*. New York: Springer-Verlag, 1993. Print.

[…] by topological Euclidean balls. Note, since connectedness is equivalent to path connectedness, the independence of base point for fundamental groups comes to connected manifolds. Our proof heavily follows […]

Pingback by Topological Manifolds (Pt. III) « Abstract Nonsense | August 30, 2012 |

Hello. Sorry for my English. There is a little Error at the end, when you define “simply conected”, you should say that the space X is path conected but you said it is simply conected.

Comment by Guest | August 30, 2012 |

Thank you very much!

Comment by Alex Youcis | August 31, 2012 |

[…] the induced structure), and wanting to keep things topologically simple, we decide that we want simply connected Riemann surfaces. We look for a while, and we can’t find (up to equivalence!) any new ones. […]

Pingback by Riemann Surfaces (Pt. I) « Abstract Nonsense | October 2, 2012 |