Complex Differentiable and Holmorphic Functions (Pt. III)
Point of Post: This is a continuation of this post.
Holomorphic Functions
We now discuss the notion of holomorphic functions which is where the CauchyRiemann equations of the introduction come into play.
Let be open. Let be a function in the real sense. Then, we define the Wirtinger’s Derivatives and as follows
We say that is holomorphic on if it’s and as functions on . As was noted in the motivation if this equation is equivalent to the CauchyRiemann equations
One can verify using standard multivariable calculus that the Wirtinger derivatives satisfy the following equations
Theorem: Let be open. Suppose that are and then
and the same holds with replaced with .
From this we may easily deduce that the set of holmorphic functions on is a algebra which we shall denote either or .
Being holomorphic is a very strong condition (we shall see that it’s as strong as being complex differentiable). For example, we have the following theorem:
Theorem: Let be open. If and or is constant then is constant.
Proof: Write . The proof is the same for the case of so we only do the first case. We know that is constant which tells us that , but by the CauchyRiemann equations this tells us that and so is constant as well.
The obvious fact that we’d like to prove is that being holomorphic on is the same thing as being complex differentiable on . Unfortunately, due to a historical mistake, we can’t quite do this yet. What is this historical mistake? We have defined here that a holomorphic function is just a function which satisfies the CauchyRiemann equations. Of course though, we needn’t have that and be continuous to state that satisfies the CauchyRiemann equations. We could call a function which satisfies the CauchyRiemann equations preholomorphic and then we’d have that the holomorphic functions are precisely the preholomorphic functions. In fact, in some books (viz. [3]) define holomorphic to mean preholomorphic. The inclusion of in our definition is purely historical and, for all intents and purposes, the correct definition (a view which should become clear when we start discussing contour integrals).
Now, it’s easy to see that being differentiable at is equivalent to the existence of complex numbers (secretly just and ) such that for some function with . One can then verify the identity
Since does not exist, it’s clear that the limit on the left hand side is going to exist if and only if and in which case . Thus, we obtain the following theorem:
Theorem: Let be open. Then, is differentiable on if and only if is preholomorphic on in which case .
Of course, this tells us immediately that
Corollary: Let be open. Then, implies that is differentiable on and .
Now, it’s not at all clear that the converse is true. There is no reason to believe at this moment that every complex differentiable function is . The important fact though is that this is true:
Theorem(Goursat): Let be open. Then, is complex differentiable on if and only if and moreover .
We shall prove this theorem eventually but it is currently out of our reach, and so we defer it. The important thing to keep in mind is that while we will be working expressly with holomorphic (opposed to preholomorphic) functions in the coming posts, this is the same thing as working with just complex differentiable functions.
References:
[1] Greene, Robert Everist, and Steven George Krantz. Function Theory of One Complex Variable. Providence: American Mathematical Society, 2006. Print.
[2] Conway, John B. Functions of One Complex Variable I. New York: SpringerVerlag, 1978. Print.
[3] Rudin, W. Real and Complex Analysis. New York,NY: McGrawHill, 1988. Print.
[4] Ahlfors, Lars V. Complex Analysis; an Introduction to the Theory of Analytic Functions of One Complex Variable. New York: McGrawHill, 1966. Print.
May 1, 2012  Posted by Alex Youcis  Uncategorized  Analytic Function, CauchyRiemann Equations, Complex Analysis, Complex Analysis  Analysis, Complex Differentiable Function, d zee, d zee bar, Differentiable Function, dz, dz bar, Holmorphic Function, Intuition, Total Derivative, Wirtinger's Derivatives
No comments yet.
About me
My name is Alex Youcis. I am currently a senior a first year graduate student at the University of California, Berkeley.
About Me
Blogroll
 Absolutely Useless
 Abstract Algebra
 Annoying Precision
 Aquazorcarson's Blog
 Bruno's Math Blog
 Chris' Math Blog
 Climbing Mount Bourbaki
 E. Kowalski's Blog
 Geometric Group Theory
 Geometry and the Imagination
 Gower's Weblog
 Hard Arithmetic
 HardyRamanujan Letters
 Ngô Quốc Anh's Blog
 Project Crazy Project
 Rigorous Trivialities
 Secret Blogging Seminar
 SymOmega
 TCS Math
 Unapologetic Mathematician
 What's New
Lecture Notes
Categories
Top Posts
 Munkres Chapter 2 Section 17
 Munkres Chapter 2 Section 18
 Munkres Chapter 2 Section 19 (Part I)
 Invertible Linear Transformations (Pt. II)
 Extending Uniformly Continuous Functions
 About me
 Munkres Chapter 2 Section 19 (Part II)
 The Dimension of R over Q
 About This Blog
 The Splitting Lemma (For Modules)

Algebra Algebraic Combinatorics Algebraic Topology Analysis Answers Category Theory Chapter 2 Characters Character Theory Class Functions Compactness Complex Analysis Connectedness Derivative Differential Geometry Differential Topology DIrect Limit Direct Limits Examples Exterior Algebra Field Theory Finite Dimensional Vector Spaces Full Solutions Functor Galois Theory Geometry Group Group Actions Group Algebra Groups Group Theory Halmos Homological Algebra Homomorphism Homotopy Ideals Induced Character Induced Representation Intuition Inverse Limit Irreducible Characters Irreps Isomorphism Linear Algebra Linear Transformations Manifolds Matrices Module Modules Module Theory Motivation Multivariable Analysis Munkres Normal Subgroups Number Theory Permutations PID Polynomials Prime Ideals Products Product Topology Projections Representation Theory Review of Group Theory Riemann Surfaces Ring Rings Ring Theory Rudin Solutions Sylow Theorems Symmetric Group Tensor Product Topology Total Derivative
Leave a Reply