## Countable Coproduct of Free Modules are Free, but not Arbitrary Products

**Point of Post: **In this post we prove that the coproduct of an arbitrary number of free modules is free, yet the same isn’t true for arbitrary products.

*Motivation*

It is fairly obvious that the arbitrary direct sum of free modules are free modules, but what about direct products? Is it clear, or even likely that every product can be expressed as a coproduct–that is the content of the question. The answer as it turns out, is no. Namely, we can take the arbitrary (even countable) product of free modules and get modules which aren’t free. This, once again, flies in the face of the case for vector spaces and modules over division rings since their arbitrary direct product is still free (still being a module over a division ring).

*Coproducts and Products of Free Modules*

What we first prove is the following obvious theorem which says, in essence, that the arbitrary coproduct of free modules are free, and moreover that what we want to be a basis is a basis. In particular:

**Theorem: ***Let be a set of free -modules. Then, given any set of bases the set , where is the image of under the usual inclusion , is a basis for . In particular, the arbitrary coproduct of free modules is free. Moreover, if is an IBN-ring then .*

**Proof: **To see that is a basis we note first that if in the coproduct is arbitrary then it can be written as where each . But, since is a basis for we see that is a linear combination of elements of and since is an -map it clearly follows that each is a linear combination of elements of and so clearly is a linear combination of elements of . To see that is linearly indepdendent we merely note that if a linear combination of the elements of is zero, then each coordinate would have to zero, which would tell us that a linear combination of the is zero, which says that all the coefficients are zero. Doing this for each tells us that every coefficient is zero, and so linear independence follows. Thus, is a basis as desired.

The other two statements follow immediately from this.

But, as stated, not everything works out nicely for arbitrary products (finite products are fine since they coincide with coproducts). Indeed, we have the following, somewhat surprising theorem:

**Theorem: ***Let be a PID that is not a field. Then, is not a free -module.*

**Proof: **Suppose for a contradiction that has a basis . Define, for , the support to be the finite set of elements of which have nonzero coefficients in the -expansion of . The important thing to note is that then . Since is not a field we can choose some which is nonzero and noninvertible. Define then the -support to be the set of basis vectors in the -expansion whose coefficient is not divisible by . Of course we have that .

Choose a sequence of elements of for which the first coordinates of is zero and the support of any two are disjoint (it’s clear how to do this). Divide by the maximal power of which is permissible, to obtain a new sequence . Define where this sum makes sense since coordinatewise this is a finite sum. So, we claim that the existence of is a contradiction. Why? Since is a basis we should be able to express as the linear combination of some finite subset of . That said, we shall now show that can be made arbitrarily large. Indeed, let . Note then that is equal to, by construction, , but note that is non-empty by construction. Continuing this way down, recalling that since the ‘s have disjoint supports they distribue we can clearly see that . But, since it follows that can be made arbitrarily large, which is a contradiction.

From this we the following we get the following corollary:

**Theorem: ***Let be a commutative unital ring and two free left . Then, need not be free.*

**Proof: **Clearly are free -modules, but because of what we know about Hom sets and coproducts we have that and by the previous theorem this is not free.

**References:**

[1] Dummit, David Steven., and Richard M. Foote. *Abstract Algebra*. Hoboken, NJ: Wiley, 2004. Print.

[2] Rotman, Joseph J. *Advanced Modern Algebra*. Providence, RI: American Mathematical Society, 2010. Print.

[3] Blyth, T. S. *Module Theory.* Clarendon, 1990. Print.

[…] this would be equivalent to the statement that the product of free modules is free, which we have shown before this is not true in […]

Pingback by Projective Modules (Pt. II) « Abstract Nonsense | February 7, 2012 |