## Submodules

**Point of Post: **In this post we discuss the notion of submodules and prove a few basic theorems.

** Motivation** As always, once we have defined a new structure we’d like to discuss the substructures inherit in the definition. Luckily for us, thinking of substructures shouldn’t be a big stretch since they are just generalizations of subspaces for vector spaces. Indeed, the subsets of a module for which the restriction of action is a module are precisely those subgroups of which are stable under the -multiplication. Moreover, just as was the case for rings the submodules of a given module form a lattice. So, let’s get started!

*Submodules*

** **

Let be a ring and let be a left -module. We say that the additive subgroup of is a *left submodule *if the restriction of the -action to is still a left -module, we denote this by . To be more explicit, suppose our ring action is , then we say that is a submodule if is an additive subgroup of and the map given by produces a well-defined module structure on . It’s pretty easy to see that this is equivalent to saying that is stable under -multiplication in the sense that for every since the only real “issue” that could arise with this mapping to be well-defined is that is not in which is equivalent to having . The definition of a *right submodule *of a right -module is defined similarly. Since it should be clear from context which kind of submodule we are using we shall often just speak of submodules.

So, when is an additive subgroup which is also stable under -multiplication. Well, when and is unital there is a nice way to think about this:

**Theorem: ***Let be a ring and a left -module. Then, if and only if and for every and one has .*

**Proof: **To see that is an additive subgroup of we merely note that if we then have by assumption that , and so is a subgroup as claimed. Moreover, is stable under -multiplication since given any and one has that . The converse is clear.

Ok, so let’s get some examples of submodules. As we mentioned earlier one of the prime examples of modules are rings thought of as modules over themselves (or any subring of themselves). Indeed, suppose we are given some ring and let’s consider it as a left -module over itself. What are the submodules? Well, they are precisely the subgroups of with the property that for every –sound familiar? You guessed it! The submodules of a ring thought of as a left module overthemselves are precisely the left ideals of the ring. What about the other important class of modules, abelian groups? Indeed, suppose that is an abelian group considered as a left -module in the usual way. Note then if is a subgroup of then automatically we know for every and since this is one of the defining characteristics of subgroups. Thus, every subgroup of of is a submodule, and clearly the converse is true so that submodules of abelian groups are just the subgroups.

Now, let’s look at a more exotic sort of example. Suppose that are given an arbitrary ring and we look at the product ring . Clearly then naturally has the natural structure of a left -module by defining scalar multiplication coordinatewise (i.e. if and then ). We claim that the direct product of all elements of with finite support (i.e. only finitely many non-zero coordinates) is a submodule of . Indeed, it’s easy to see that if we define to be the set of nonzero coordinates of then and and so evidently both and are finite if are so that is a submodule as desired.

Of course, just as the case with rings we can form new submodules of a given ring out of certain subsets, just by intersecting all the submodules containing them. This will end up giving us a lattice structure just as it did for rings. Indeed, this is all based off of the following observation:

**Theorem: ***Let be a ring and a left -module. Then, if is a set of submodules of then .*

**Proof: **We know the intersection of subgroups of is a subgroup, and so it suffices to show that the intersection is stable under the -multiplication. But, this is clear since if is in the intersection then for every and since we have that and so for every and so is in the intersection.

Just as in the case of rings we can define for a subset of a module the *submodule generated by *, denoted to be the intersection of all submodules of containing . If we are liable to write opposed to . If for some we say that is *finitely generated* and if then is said to be *cyclic* (note that this jives with our previous group theoretic definition of cyclic groups).

Now, note that in linear algebra there is a notion of something which looks fishly close to the above definition, the *span* of a set of vectors,denoted (or just if ) or , for a set , which was defined to be the set of linear combinations of elements of (linear combination here has the same meaning as it did in linear algebra). To be more formal if is a left -module and we define to be the following set . The first thing to note is that is always a submodule of trivially. That said, the important thing to note is that in general is not equal to . To see this consider as a module over , note then that and so does not even contain ! The thing to note is that if is not a unital there is no reason for to even contain (for example). That said, if is unital then and do coincide (as is consistent with our previous knowledge of linear algebra over fields):

**Theorem: ***Let be a unital ring and a unital left -module, then for any one has .*

**Proof: **Clearly now for every since . Thus, contains and is a submodule of from where we may conclude that . The converse is always true since being a submodule of containing implies that every linear combination in is in so that . The conclusion follows.

Now, we make the observation that just like the case for rings these ideas allow us to define a lattice structure on the set of submodules of the module . Indeed, if we define the *supremum *of to be the submodule generated by the union over all the submodules in usually denoted . Similarly, we define the *infimum *of , denoted , to be the intersection over the submodules in . Now, it’s clear from the previous theorem that if is unital then is equal to the *sum *defined to be the set of all finite sums of things in (note this agrees with our previous knowledge of the lattice of ideals in a ring). It is not difficult to check that if is unital that is a *modular *complete lattice (cf. the discussion of this issue on the lattice of ideals for a ring).

**References:**

[1] Dummit, David Steven., and Richard M. Foote. *Abstract Algebra*. Hoboken, NJ: Wiley, 2004. Print.

[2] Rotman, Joseph J. *Advanced Modern Algebra*. Providence, RI: American Mathematical Society, 2010. Print.

[3] Bhattacharya, P. B., S. K. Jain, and S. R. Nagpaul. *Basic Abstract Algebra*. Cambridge [Cambridgeshire: Cambridge UP, 1986. Print.

[…] of mappings for every with we can merely define by where denotes, as per usual, the submodule generated by and claim that satisfies the needed properties. To see this we just have to note that (since […]

Pingback by Direct Limit of Modules (Pt. II) « Abstract Nonsense | November 30, 2011 |