## Actions by p-Groups (Pt. I)

**Point of Post: **In this post we discuss the theory of -groups acting on sets, and some of its ramifications.

*Motivation*

I have previously discussed group actions, but being a rush to discuss group theory I skirted over some of the beautiful theory. So, I’d like to take some time to discuss one of the prettier and more powerful branches of the theory, namely when we restrict our attention to group actions by -groups. Not only will we be able to say some prove some fairly substantive theorems about -group actions explicitly, but will be able to prove some very neat things in more general group theory and in number theory. The interesting fact about the theory we will discuss is that at the root of everything is a ‘fundamental theorem’ whose presence (being the theorem in the case of a particular group action) is the proof that every -group has a non-trivial center. Namely, we were able to conclude that since the cardinality of any conjugacy class must divide the order of the group, that they must be divisible by . From this and the fact that the sum of the cardinalities of all the distinct conjugacy classes must sum to the order of the group (which is divisible by ) that the sum of all the one point conjugacy classes must have cardinality divisible by . Well, the generalization of this idea (which, as I’m sure is pretty clear, can be restated for an arbitrary action with conjugacy class replaced by orbit) will be the main tool I mentioned from which all our other theorems are (not always straight-forward) consequences.

*Actions by -Groups*

In all the follows will be, unless stated otherwise, a -group for a fixed but arbitrary prime (recall that a (finite) -group is a group of order for some ). If acts on a set we will denote the set and the set . A *transversal *for the action of on will be a set which consists of precisely one element of each orbit of the action of on . For we denote the orbit of under the action by the notation or if there is ambiguity about which group is acting (e.g. if we are considering the action of a group and a subgroup on the same set). We denote the stabilizer subgroup of by . The fundamental theorem we stated is:

**The Fundamental Theorem: ***Let act on a set . Then,*

**Proof: **Fix some transversal for the action of on . We can obviously partition into the two sets of all with and . From the Orbit Decomposition Theorem we know that

(where denotes the union is disjoint). That said, it’s clear by definition that

from where we may easily conclude that

We know though from the Orbit Stabilizer Theorem that and so for some . But, since for each we have that for some and so in particular, the right hand side of is a sum of things divisible by , and thus itself divisible by . The conclusion follows.

**Corollary: ***If is not divisible by then . If is divisible by then is divisible by .*

From this we get the fact that all -groups have non-trivial centers easily:

**Theorem: ***Let then, is non-trivial.*

**Proof: **Let and let act on by conjugation (this is well-defined precisely because is normal). Note then that are the elements of which commute with everything in , in other words, . Since is divisible by we have by the previous corollary that . But, since we must have then that .

Another consequence of the Fundamental Theorem is

**Theorem: ***Let be an -dimensional vector space over where , then there exists a non-zero (in fact, at least ) vector such that (i.e. is an eigenvector with eigenvalue ) for all .*

**Proof: ** naturally acts on by just defining to be . We see then the question is equivalent to the fact that is non-trivial, but since we have by the Fundamental Theorem that and since we may conclude that . The conclusion follows.

**References:**

1. Dummit, David Steven., and Richard M. Foote. *Abstract Algebra*. Hoboken, NJ: Wiley, 200

[…] Actions by p-Groups (Pt. II) Point of Post: This is a continuation of this post. […]

Pingback by Actions by p-Groups (Pt. II) « Abstract Nonsense | September 15, 2011 |

[…] act on by left multiplication. Since is a -group we have by the ‘fundamental theorem’ that . That said, since we have in particular that and so is non-empty. So, let then for all […]

Pingback by Sylow’s Theorems Revisited « Abstract Nonsense | September 20, 2011 |