## Rings of Functions (Pt. I)

**Point of Post: **In this post we discuss multiple types of rings of functions including the ring of functions from a set into a ring and the subring of of continuous functions when is a topological space and is a topological ring.

**Motivation**

We now discuss a class of rings which comes up very often in mathematics, rings of functions. Why are these rings interesting? Well, besides as serving as counterexamples for some, otherwise plausible theorems, they serve as an ambient ring for many other important rings. To be less cryptic, we shall see that such important rings as polynomial rings and the rings and sit naturally inside rings of functions.

*Rings of Functions*

Let be a ring and a non-empty set. We turn the set into a ring by defining the sum and multiplication of functions pointwise. Namely, if we define and by the rules and . Evidently this turns into a ring with additive identity the *zero function* . If is unital then is unital with *one function *.

In fact, it’s fairly easy to see that as rings is isomorphic to the product ring (i.e. ‘-copies’ of ). Thus, the distinction between the two is purely connotative, especially when considering it as the ambient ring to very important subrings.

Similar to polynomial rings we have, for each , the *evaluation moprhism * given by . This is evidently a homomorphism since and . Moreover, if is any subring of which contains the *constant functions* then is surjective since for any one has . From this and the first isomorphism theorem we have just proved:

**Theorem: ***Let be a ring, a set, and a subring of which contains the constant functions for every . Then, for every where .*

There is a nice way to picture this geometrically, but it may be hard to describe. To make things extra simple let’s deal with and identify each function with its graph . We then picture as sitting inside the infinite rectangular prism in the sense that each ‘sheet’ contains the graph of a function . We can then see that if we fix some point and draw the vertical line through in each sheet that the graph will intersect this line precisely once. In particular, let’s fix some and think about the sheet, call it , that lives in. As we noticed we have that intersects the line in precisely once, in particular at . So, imagine standing at in and looking up or down at the sheets above and below you. You can see that in some sheets there is no intersection directly above or below you (i.e. that the graph of the function in that sheet doesn’t intersect at , perhaps it intersects at ) and in some sheets there is. We can imagine then that modding out by has the effect of ‘crushing’ all the functions whose points of intersection do lie directly above or below you down onto yourself, so that under the identification you treated as a single point. We see then that after ‘crushing’ all the sheets down in this way for each point on the line we are really left with a single sheet and all the functions have been crushed to lie only on the line which we evidently identify with . And there we have it, ta-da! A convoluted geometric reasoning to why , and with a slight stretch why .

*Rings of Continuous Functions*

While serves as an interesting example of a ring from a pure ring theoretic standpoint there are much more ‘natural’ places that rings of functions occur in mathematics. Probably the first place one encounters this ring was in advanced calculus (a kind of belittling term for basic analysis) when the teacher said “the sum and product of continuous functions is continuous. Since obviously the constant one function is continuous this is precisely the assertion that the ring of continuous functions is a unital subring of .

For the more mathematically experienced reader this probably isn’t the extent of one’s exposure to rings of continuous functions. Indeed, given a compact Hausdorff space one considers the ring of continuous functions as a Banach algebra in the general Stone-Weierstrass theorem. In fact, a lot of more advanced analysis could be described as studying various subrings of for particular spaces.

Thus, it’s clear that while the distinction between the ring of functions and product of rings is shaky at best there is a real use to considering rings of continuous functions from a topological space to . More generally though we can consider the ring of continuous functions where is a topological space and is a *topological ring ,*i.e. a ring which is also a topological space such that the maps and are continuous as maps when is given the product topology and the map is continuous. In other words, a topological ring is a ring with a topology such that the underlying group structure forms a topological group and the product map is continuous. The first thing we note is that:

**Theorem:** *Let be a topological space and a topological ring, then is a subring of which is unital if is.*

**Proof: **If then since is the composition of the maps and both of which are continuous by assumption. Similarly, since is the composition of the maps and . Evidently if is unital then is the identity for and since constant functions are continuous we have that . The conclusion follows.

Since the constant functions are in we also know that by previous theorem.

We shall see that rings of continuous functions shall serve as prime examples for many of the concepts that shall come up in the future.

**References:**

1. Dummit, David Steven., and Richard M. Foote. *Abstract Algebra*. Hoboken, NJ: Wiley, 2004. Print.

2. Bhattacharya, P. B., S. K. Jain, and S. R. Nagpaul. *Basic Abstract Algebra*. Cambridge [Cambridgeshire: Cambridge UP, 1986. Print.

[…] Let be an infinite integral domain and the ring of all functions with the usual operations. Then the obvious map is an […]

Pingback by Polynomial Rings in Relation to Euclidean Domains, PIDs, and UFDs (Pt. I) « Abstract Nonsense | October 24, 2011 |