## Character Table for the Quaternions

**Point of post: **In this post we use the techniques we’ve devoloped to construct the character table for the quaternions.

*Motivation*

We continue our effort of constructing character tables by focusing now on the Quaternions, . We will once again show how beautiful the theory we’ve devoloped can be by constructing the entire table without actually finding a non-trivial irreducible character.

*Character Table for *

We begin by finding the number of irreducible characters of and their degree. To do this, we note that if is the degree of any irreducible character that so that . Moreover, since we may conclude that . Thus, we are looking for solutions to where we know that since the inclusion of the trivial character and since otherwise all the irreps of would be degree one and thus would be abelian. But, a quick check shows that the only possible solution to this is and . Thus, we may conclude that where and . Thus, we may begin to construct our character table (using the ideas we used before to start the table)

We next wish to ascertain the true identities of and . One of these, say , is obvious. Namely, it is clear by inspection that and so is in a class by itself–i.e. . Thus, by first principles we know then that . Now, since and (since clearly none of are in the center of ) we may conclude by a simple case analysis to conclude that . Noting that is conjugate to , to , and to we may conclude that and . Noting though that since we may conclude that . But, by **CT 3 **we know that

and from **CT 9** we may conclude that and so . Similarly, and . But, by **CT 2 ** we know that

** **Therefore, . Thus, our character table begins to take shape as

Note though that by **CT 2 **we know by comparing rows two, three, and four with row five respectively gives us

so that for . Thus, our character table can now be rewritten

Note next that by our previous remarks we have that for . But, by **CT 7 **we know that for are real and thus are all either plus or minus one. But, by considering **CT 2 **for rows two, three, and four with row one we may easily conclude that two of are and the other for . But, it’s easy to see from **CT 2 **that two rows cannot be exactly the same. And, since the first two columns of each of these rows agree it follows that it is at least one of the values in which we are interested which differs. But, since there are precisely ways to consider the aforementioned configurations of ‘s and ‘s it follows that all three of these configurations occur. Thus, since the characters are interchangable we may finally fill in the character table as

*Consequences*

Using **CT 5 **and **CT6 **we may conclude from the above that

and .

**References:**

1. Isaacs, I. Martin. *Character Theory of Finite Groups*. New York: Academic, 1976. Print.

2. Simon, Barry. *Representations of Finite and Compact Groups*. Providence, RI: American Mathematical Society, 1996. Print.

No comments yet.

## Leave a Reply