## Topological Groups (Space of Cosets)

In this post we discuss the canonical way of combining the quotient topology and the quotient group together in one unified idea. But, we start more generally.

*Remark:* If you remember from algebra there were both left and right cosets and they weren’t (in non-abelian cases) generally equal. Thus, to speak of cosets without mention of left or right is technically incorrect. That said, for ease in this post coset will always refer to left coset. Everything is word-for-word the same for right cosets.

Recall from algebra that given a group and some the relation was in fact an equivalence relation. Then, remember that the equivalence classes of this relation were all of the form and that the set of all these equivalence classes were called the *cosets *of (denoted ) with each individual being a *coset. *Remember then that if it happened that there was a canonical way to make into a group by defining

With this group structure we called the *quotient group* of by and we were then presented with the canonical homomorphism

In fact though, normality was absolutely crucial to define the group structure in that way thus one rarely talked about outside of the context when it was the quotient group. We don’t take that view though, for regardless of whether is normal or not the map as above is still a surjective map and thus let’s us imbue upon it the quotient topology determined by . If that’s true we will (keeping with previous notation) write

with (for now) reserved for the map sending each element to it’s coset.

We first show that the canonical quotient map () is, in fact, open.

**Theorem:** Let be the canonical quotient map. Then, is open.

**Proof:** Recall that is open if and only if is open. Notice that firstly that

We claim that:

**Lemma:**

**Proof:** Let then which implies that for some . So, and so by the above this implies that for some . So, since and it follows that and so for some . Thus, .

Conversely, let then but it is not to hard to see that since is a group and that . But, and so . The conclusion follows.

From this, we see that if is open then is open since and we proved earlier that the product of an open set with any other set is open. The conclusion follows.

Now the obvious question is if happens to be normal is the space of cosets a topological group? The answer is yes as the following shows:

**Theorem:** Let then is a topological group with and being the quotient topology determined by the canonical homomorphism.

**Proof:** It is an elementary fact that with this operation is, in fact, a group with . Thus, it remains to show that the maps

and

are continuous. But, we proved in our first post pertaining to topological groups that this is equivalent to showing the map

is continuous, thus we do this.

To do this we first note that since is open then so is (as was proven way back in the day) and thus as the indicates is a quotient map. Thus, to show that

is continuous we need only show (by the characteristic property of quotient maps) that

is continuous. But, we claim that the following diagram commutes

From where the result will follow immediately since is the composition of continuous maps. So, to do this we note that

and

from where the conclusion follows.

We are now prepared to prove the main theorem of this post, one which I like to call the *first topological group isomorphism theorem*. But, before get into it we need to discuss some terminology.

You will undoubtedly remember from your algebra days that if is an algebraic epimorphism then and . Well, we also know from the above lemma that if we give the quotient topology formed by the canonical homomorphism then it’s a topological group. So, the question is if are topological groups and is a topological group epimorphism (a continuous algebraic epimorphism… abbreviated T.G. epimorphism) then are where means that there is a T.G. isomorphism (both an algebraic isomorphism and a homeomorphism) between and (if this is true it is said that and are T.G. isomorphic)? The answer is yes if we also stipulate that is a quotient map.

**Theorem:** Let be a T.G. epimorphism which is also a quotient map. Then,

**Proof: **Let

This map is well-defined since if then for some and so

It is also clearly a bijection (this is exactly the same as in the first isomorphism theorem) and it’s a homomorphism because

Thus, it remains to show that it’s bicontinuous. We first claim that the diagram

commutes. (the is just the identity map, as embarrassing as this is to say I couldn’t figure out how to make a triangular diagram look nice. This diagram would mean the same thing as if you collapsed the upper right vertex into the upper left and were left with a triangle. This will most likely happen every time I need to use a triangular diagram) To see this we merely note that

Thus by the characteristic property of quotient maps it follows that is continuous. Now, since is is a quotient map the next step is to realize that

commutes since

We may conclude that is continuous. The theorem follows.

*Remark: * Notice that if is compact and Hausdorff then we don’t need the openess of .

Now that we’ve done that we can prove some more trivial theorems.

**Theorem:** Let then, is regular if and only if is closed.

**Proof:** As proven earlier it suffices to show that it’s . To do this merely need to show that is closed. But, as we’ve proven earlier this is merely (since it’s ) and thus a translation of a closed set and thus closed.

Conversely, if is regular than it’s and so is closed in . Thus, so is .

The conclusion follows.

This is actually a weaker version of a theorem which says that if is closed then is closed, but we omit the proof of this here.

**Theorem:** Let be first or second countable and . Then, is first or second countable.

**Proof:** This follows since is the open map image of under .

With this we can prove a cool equivalence

**Theorem:** where has the usual topology and addition and has the usual topology and complex multiplication.

**Proof:** It is trivial to check that is an open T.G. epimorphism and so from the above . But, and thus solving we see this happens precisely when . Thus, and so the conclusion follows.

Now, from this we can prove something even more surprising. But first, we need to define a certain topological group. Note, I spend enough time on these posts and I don’t have that much more to spare. That said, what I am about to discuss is a crude and degrading introduction to a very important topological group which I will come back to without doubt. Consequently, I omit some of the laborious details for any interested reader to prove.

**Theorem:** Let be the set of all two-by-two rotation matrices under matrix multiplication. In other words,

We can topologize by considering it as a subspace of (this is a routine proof). Thus, with this topology and group structure is a topological group.

**Proof: **It remains to show that

given by

is continuous. But, it is easy to verify that

And that these matrices are orthogonal (i.e. ) and so

But, remembering that is homeomorphic to a subspace of and the corresponding map

is trivially continuous. The conclusion follows.

From this we can construct the following T.G. isomorphism

**Theorem:** .

**Proof:** Each is of the form for some . Then, define

This is trivially continuous since the mapping

is continuous (and the fact that the LHS of the mapping is homeomorphic to and is homeomorphic to a subspace of the RHS) where . It’s injective because injective on and surjectivity is obvious. Thus, is a continuous bijective mapping of a compact (since is closed and bounded) space into a Hausdorff space, thus by previous theorem automatically a homeomorphism.

So, it remains to show that it’s a homomorphism but this follows from an earlier observation

Where

and the others are defined similarly.

By previous comment the conclusion follows.

**Corollary:**

That will wrap it up for this post, there is much more that can be done with these subgroups though. I will probably take a post or two to just do problems when I’m finished with what I want to say.

[…] consider the obvious map eliminating the periodicity. But, it’s easy to see using the first topological group isomorphism theorem that is isomorphic as a topological group to thought of as a multiplicative group. Thus, closed […]

Pingback by Closed Curves « Abstract Nonsense | September 23, 2011 |

[…] call the -torus. The terminology is appropriate, because topologically is just . Indeed, as topological groups we have […]

Pingback by Riemann Surfaces (Pt. II) « Abstract Nonsense | October 2, 2012 |